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Abstract

Considering the effects of both the different material properties of composite layers and the poling directions of pie-
zoelectric layers, we utilized the assumption of the simple-higher-order shear deformation theory to model and analyze
the laminated composite plate integrated with the random poled piezoelectric layers. Further, the generalized Hamil-
ton�s variation principle for electro-elasticity was employed to deduce the fundamental equations of piezoelectric/com-
posite anisotropic laminate, i.e. the governing equations and boundary conditions. For the special requirement of the
larger-amplitude deflection of smart structures, the Von Karman strains were used to account for the geometric non-
linear effect of the practical larger-amplitude deflection on the electro-elastic behavior of smart composite structures.
Moreover, the sensor equations were also carried out with considering the large-amplitude deflection effect of smart
composite structures.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent decades, the piezoelectric ceramics with a distributed poling direction have been extensively
designed as actuators/sensors to apply in the adaptive structures and systems for controlling or
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monitoring the shape deformation of engineering structures due to their excellent piezoelectricity and
pyroelectricity after a controllable poling process (Kenji, 1998). However, the early commercial piezo-
electric materials were too brittle to evoke their much wider application in some special smart structures
require very larger displacement (>1000 lm), such as linear motors, cavity pumps, switches and loud
speakers, etc. As the new piezoelectric polymer, including PVDF, PVF2, etc., with good properties
of flexibility, ruggedness, softness and light weight was discovered by Kawai (1969), the disadvantage
of the brittle piezoelectric materials in the special requirement smart structures was successfully over-
come. Furthermore, the advance of processing technology of thin film and composite in piezoelectric
materials also promotes their successful applications in the special requirement structures. Therefore,
more and more novel smart structures integrated with the piezoelectric materials have been achieved
for the particular demand. For example, Haertling (1994) developed a new-method for producing
ultra-high-displacement actuator that can exceed 300% by combining the piezoelectric layer and reduced
layer; Lee and Li (1998) established a motor by the new mechanism that was using the extension-twist-
ing coupling of anti-symmetric fiber-reinforced composite laminate induced by the integrated actuator-
piezoelectric plate subjected to the external electric field, which bending behavior was further experi-
mentally studied and revealed the large-deflection results by Cheng et al. (2000). Thus, increasing uses
of piezoelectric materials in the smart structures and systems call for better understand and accurate
analysis of their electrical and mechanical behaviors for the future better design. As is well known,
from the viewpoint of piezoelectric work mechanism, it is definitely summarized that all of the piezo-
electric actuators and sensors either surface bonded or embedded in the host structures for the adaptive
structure system are based on either its extension or shear mechanism. In order to have a good theo-
retical guide to design the smart structures and systems, many analytical linear models with the classical
or first-order shear theory had been developed to describe and predict the electro-mechanical behavior
of the different smart structures, involving the one-dimensional, two-dimensional and three-dimensional
models. For instance, Crawley and Anderson (1989) and Crawley and de Luis (1987) studied the elec-
troelastical properties of a piezoelectric/elastic laminated beam with its extension mechanism; Lee (1990)
incorporated the piezoelectric effect into the classical laminate plate theory to analyze the piezoelectric
laminate plate with the extension action of partial electrode covered piezoelectric layer; Zhang and Sun
(1996, 1999) utilized the variation principle to derive the governing equations for the adaptive piezoelec-
tric structure using the shear mode of piezoelectric materials and then carried out an approximate solu-
tion. Later, other researchers did some similar works on the laminated piezoelectric composite to
further explain the linear electro-elastic coupling behavior (Liu et al., 1999; Reddy, 1999; Reddy and
Cheng, 2001). However, due to the great difference from the material constants and action between
the piezoelectric layers and composite layers in smart structure, it is necessary and important to account
for the transverse shear strain of anisotropic piezoelectric/composite laminate. For this case, incorporat-
ing the effect of large deflection and in-plane loads caused by piezoelectric layer, Pai et al. (1993) ever
only deduced a fully and complicated nonlinear theoretical model for the dynamics and active control
of elastic/piezoelectric laminated plate with piezoelectric extension mechanism but not carry out the
final numerical results. Thus, establishing a simple 2-D or 3-D theory of piezoelectric/composite plates
with piezoelectric extension or shear mechanism to accurately describe the global behavior of smart
laminate plate seems to be a compromise between accuracy and ease of analysis. Up to date, few
literatures from this view were reported for the smart composite laminated plate with piezoelectric
extension or shear mechanism. Therefore, in this paper, we proposed to carry out a set of generalized
simple fundamental equations for piezoelectric/composite anisotropic laminated plate with either
piezoelectric extension or shear mechanism in the light of Hamilton�s variation principle and assump-
tion of Reddy�s (1984) simple-high-order theory. This developed analytical model also took the effect
of structural larger-deflection and distributed poling direction of the piezoelectric layers into
consideration.
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2. Theoretical analysis

2.1. Basis assumption and relationship

As shown in Fig. 1, a practical smart structure of piezoelectric/composite laminated plate is generally
composed of a number of piezoelectric layers with the spatial poling directions and fiber-reinforced com-
posite laminas with the arbitrary in-plane fiber orientations. In general, the main axial direction of a com-
posite lamina is along the reinforced fiber direction in the x–y plane (bc = 90�) with an orientation angle ac,
as shown in Fig. 2(a). Similarly, the main axis (poling direction) of a common piezoelectric layer orients
spatially with the distribution angles ap and bp from the local coordination system to the global coordina-
tion system as shown in Fig. 2(b). Generally, the external electric field is applied to the surface electrode of
piezoelectric layer in the z-direction across the thickness. The electro-elastic constitutive relationship of the
piezoelectric/composite lamina in the local coordination system can be presented by the stresses rl

ij, the
strains elij, the electric displacements Dl

i and the electric fields El
i in the following formation:
rl
ij ¼ Cijmne

l
mn � eTkijE

l
k

Dl
i ¼ eimnelmn þ kijEl

j

ð1aÞ
where the superscript �l� denotes those variables in the local coordination system. Cij, eij and kij are the stiff-
ness matrix, piezoelectric constant matrix and dielectric constant matrix of the lamina in the local coordi-
nation system respectively. It is noted that the piezoelectric constants eij and dielectric constants kij are
equal to zero inside the composite lamina. After applying the coordination transformed matrices Tc and
Te, as shown in Appendix A, to the above equations for the kth lamina, the lamina constitutive relationship
in the global coordination system can be obtained by
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Fig. 1. An illustration diagram for the general piezoelectric/composite laminated plate.
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Fig. 2. The schematic show for the main axial distribution of the lamina: (a) composite layer; (b) piezoelectric layer.
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where the subscript ‘‘k’’ denotes the kth layer and the superscript ‘‘�1’’ means the inverse of the matrix
respectively.

In order to consider the effect of larger-amplitude deflection, the Von Karman strains are used to ac-
count for the geometric nonlinearities. Then, the relationships between the strains and displacements can
be presented by
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and the electric fields can be induced from the external applied electric potential
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In terms of Reddy�s simple higher-order theory for the elastic laminated plate, the assumptions of the
local elastic displacement field for piezoelectric/composite laminated plate can be also made as
u ¼ u0 þ z /x �
4

3

z
h

� �2
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ow0

ox
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4

3

z
h

� �2
/y þ

ow0

oy

� �� �
w ¼ w0

ð3aÞ
where u0, v0 and w0 denote the displacements of a point (x, y) in the mid-plane. /x and /y are the rotations
normal to mid-plane about the y and x axes respectively.

In fact, the electric field is always applied along the z-direction across the thickness. Then, due to the
existence of piezoelectric layer in smart structure, the electric potential can be taken into consideration
and generally assumed as
u ¼ u0 þ zu1 ð3bÞ

where u0 is the electric potential in mid-plane of the piezoelectric lamina.

Since the piezoelectric lamina can be treated as a thin dielectric plate, it is reasonable to regard u0 and u1

as constants for the dielectric materials. Then the electric field can be given by
½Ex;Ey ;Ez�T ¼ �½0; 0;u1�
T ð3cÞ
The relationship between the applied voltage V3 and the electric potential uon the electrode is defined as
V 3 ¼ u ð3dÞ

Substitution of Eq. (3a) into Eq. (2a) can yield the strain–displacement relationship
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On the assumption of the strain ez = 0 in terms of Reddy�s simple-higher-order theory, the strain–
displacement relationships, i.e. Eq. (4), can be rewritten by
ex ey ez exy½ �T ¼ fe1g þ zfe2g þ z3fe4g ð5aÞ
and
eyz
ezx

� �
¼ f~e1g þ z2f~e3g ð5bÞ
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where the following formulae are used:
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In order to derive the equations conveniently, the relative stress resultants can be always defined as
follows:
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Substituting Eqs. (1b) and (6) into Eq. (7) can yield
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where Aij, Bij, etc. are the plate stiffness and defined as follows:
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and Np
x ; Np

y , etc. denote the stress resultants induced by the coupling electro-elastic behavior of piezoelectric
layers due to the external electric fields,
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with the lamina stiffness and piezoelectric constants matrices Qk
ij ¼ ½T c��1

k Ck
ij½T c�k and �ekij ¼ ½T c��1

k ekij½T e�k.
Here, the electric field applied to the piezoelectric layer with partially covered electrode can be described
by Heaviside step function as
Ek
z ¼ E0½Hðx� x0Þ � Hðx� x1Þ� � ½Hðy � y0Þ � Hðy � y1Þ�
2.2. The generalized Hamilton variation principle to include electro-elasticity

Under the action of external mechanical and electric field, the simplest form of electric enthalpy which is
a compatible with thermodynamics can be given by
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Integrating with respect of z-direction for Eq. (9) and using Eqs. (7) and (8), the electric enthalpy per unit
of piezoelectric/composite laminate can be presented as
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where the rotation inertias are defined by ½I0; I1; I2; I3; I4; I6� ¼
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Furthermore, the external work done by the applied mechanical load and electrical field is
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where �r denotes the surface charge of piezoelectric layer. And the new defined stress resultants have the
following forms:
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In the isothermal process, the generalized Hamilton principle for piezoelectric/composite laminate can
be used to derive the dynamics equations at any time interval [t1, t2] as
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Finally, substituting Eqs. (10)–(12) into Eq. (14) and applying variational principle to the displacement
functions u0, v0, w0, /x and /y can yield the governing equations:
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where the new rotation inertias are given by
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and the variation for wx and wy are used during the deducing process as follows:
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o

os
;

o

os
¼ nx

o

oy
� ny

o

ox

ð16bÞ
and Tns and Tn are defined in a same manner to Nn and Nns respectively.
Substitution of Eqs. (6) and (8) into Eq. (15) can obtain the governing equations simply presented by the

functions of mid-plane displacements and rotations by
½a� þ ½b� þ ½c� þ ½d� þ ½e� þ ½f � ¼ 0 ð17Þ

where the matrices [a], [b], [c], [d], [e] and [f] denote the different parts as following significance respectively.

The term related to the small-deformation is [a],
½a� ¼ ½Lij�5�5½u0; v0;/x;/y ;w0�T ð18Þ
where [Lij] indicates the linear differential operator matrix and is presented in Appendix B.
The term to the applied mechanical loading is [b],
½b� ¼ qx; qy ;
2

3
mx;

2

3
my ;�qz þ

1

3

omx

ox
þ omy

oy

� �� �T

ð19Þ
The term related to the piezoelectric lamina under the action of electrical field is [c],
½c� ¼ �

oNp
x

ox
þ
oNp

xy

oy
oNp

xy

ox
þ
oNp

y

oy
oMp

x

ox
þ
oMp

xy

oy
� Qp

x �
4

3h2
Sp
x �

4

3h2
oT p

x

ox
þ
oT p

xy

oy

� �
oMp

xy

ox
þ
oMp

y

oy
� Qp

y �
4

3h2
Sp
y �

4

3h2
oT p

xy

ox
þ
oT p

y

oy

� �
oQp

x

ox
þ
oQp

y

oy
� 4

3h2
o
2T p

x

ox2
þ
o2T p

xy

oxoy
þ
o2T p

y

oy2

 !
� 4

h2
oSp

x

ox
þ
oSp

xy

oy

� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð20Þ
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The term to the finite deformation is [d],
½d� ¼

ow0

ox
L1;1w0 þ

ow0

oy
L1;2w0

ow0

ox
L1;2w0 þ

ow0

oy
L2;2w0

ow0

ox
L1;3w0 þ

ow0

oy
L2;3w0

ow0

ox
L1;4w0 þ

ow0

oy
L2;4w0

ow0

ox
L1;5w0 þ

ow0

oy
L2;5w0

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð21Þ
The term to the in-plane mechanics in z-direction is [e],
½e� ¼ � 0; 0; 0; 0;
o

ox
Nx

ow0

ox
þ Nxy

ow0

oy

� �
þ o

oy
Nxy

ow0

ox
þ Ny

ow0

oy

� �� �T

ð22Þ
Noted here, when Nx, Ny and Nxy are constants, i.e. Nx ¼ N 0
x ; Ny ¼ N 0

y and Nxy ¼ N 0
xy , the fifth element of

the matrix [e] can be re-written as N 0
x
o2w0

ox2 þ 2N 0
xy

o2w0

ox oy þ N 0
y
o2w0

oy2 . Otherwise, the relative stiffness and displace-

ment must be taken place of Nx, Ny and Nxy in terms of the constitutive relationship, i.e. Eqs. (6) and (8).

The motion term is [f],
½f � ¼ �

I0€u0 þ I1€/x �
4

3
I3

o
3w0

oxot2

I0€v0 þ I1€/y �
4

3
I3

o
3w0

oy ot2

I1€u0 þ I2€/x �
4

3
I4

o3w0

oy ot2

I1€v0 þ I2€/y �
4

3
I4

o3w0

oy ot2

�I0€w0 þ
4

3h2

� �2

I6 o2

ot2
o2w0

ox2 þ o2w0

oy2

� �"

� 4

3h2
I3

o3

ot2
ou0
ot

þ ov0
ot

� �
� 4

3h2
I4

o2

ot2
o/x

ox
þ
o/y

oy

� �#

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

ð23Þ
From the fundamental equation (17), it is easy to obtain the simple expression for the piezoelectric/com-
posite laminated plate in either static or dynamic case to analyze their static or dynamic characteristics.

2.3. Analysis of the actuating and sensing function for piezoelectric lamina

While the piezoelectric layer is utilized as an actuator in smart structures and systems, it will generate
distributed stress resultants treated as the thermal stress resultants in this paper under the application of
electric field. In order to study the interaction between the applied electric field and piezoelectric laminated
composite plate with distributed covered electrode in piezoelectric layers, the generalized function i.e. Heavi-
side step function H(x) and Dirac delta function d(x) should be used to describe the distributed covered
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electrode of piezoelectric layer. Thus, for conveniently studying the interaction, the applied electric field can
be rewritten by
E3 ¼ �uðtÞF ðx; yÞ ð24Þ

where u(t) represents the time function of the applied electric field. F(x, y) denotes the effective electrode
using the Heaviside function as introduced by Lee (1990)
F ðx; yÞ ¼ ½Hðx� x1Þ � Hðx� x2Þ� � ½Hðy � y1Þ � Hðy � y2Þ� ð25Þ

Further, the differential of the function F(x, y) can be defined by
oF ðx; yÞ
ox

¼ ½dðx� x1Þ � dðx� x2Þ� � ½Hðy � y1Þ � Hðy � y2Þ� ð26aÞ
oF ðx; yÞ

oy
¼ ½Hðx� x1Þ � Hðx� x2Þ� � ½dðy � y1Þ � dðy � y2Þ� ð26bÞ

o2F ðx; yÞ
ox2

¼ ½d0ðx� x1Þ � d0ðx� x2Þ� � ½Hðy � y1Þ � Hðy � y2Þ� ð26cÞ

o2F ðx; yÞ
oy2

¼ ½Hðx� x1Þ � Hðx� x2Þ� � ½d0ðy � y1Þ � d0ðy � y2Þ� ð26dÞ
Now, the effect of a piezoelectric layer as an actuator in the smart structures and systems, i.e. [c], can be
capable of Eq. (20).

On the contrast, the piezoelectric layer can be also as a sensor to sense and monitor the shape deforma-
tion of the smart structures and systems under the action mechanical loading through the closed-circuit out-
put charge signal. Based on the Gauss�s law, the charge q(t) and electric current i(t) of the piezoelectric
lamina can be simulated by
qðtÞ ¼
Z
S
D3 ds ð27aÞ

iðtÞ ¼ dpðtÞ
dt

ð27bÞ
where S denotes the area of the covered electrode.
Substituting Eqs. (1c), (5) and (6) into Eq. (27a) can yield
qkðtÞ ¼
1

2

Z Z
sðz¼zkÞ

ð�ek31ex þ �ek32ey þ �ek34exy þ �ek35ezy þ �ek36ezxÞdxdy
"

þ
Z Z

sðz¼zk�1Þ
�ek31ex þ �ek32ey þ �ek34exy þ �ek35ezy þ �ek36ezx
� �

dxdy

#

¼
Z Z

S
�ek31

ou0
ox

þ 1

2

ow0

ox

� �2
" #

þ �ek32
ov0
oy

þ 1

2

ow0

oy

� �2
" #

þ �ek34
ov0
ox

þ ou0
oy

þ ow0

ox
ow0

oy

� �(

þ�ek35 /x þ
ow0

ox

� �
þ �ek36 /y þ

ow0

oy

� �
þ zk þ zk�1

2
�ek31

o/x

ox
þ �ek32

o/y

oy
þ �ek34

o/x

oy
þ
o/y

ox

� �� �
� 2ðz2k þ z2k�1Þ

h2
�ek35 /x þ

ow0

ox

� �
þ �ek36 /y þ

ow0

oy

� �� �
� 2ðz3k þ z3k�1Þ

3h2
�ek31

o/x

ox
þ o2w0

ox2

� �
þ �ek32

o/y

oy
þ o2w0

oy2

� �
þ �ek34

o/x

oy
þ
o/y

ox
þ 2

o2w0

oxoy

� �� �)
dxdy

ð28Þ
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So, the closed circuit sensor equation can be also rewritten as
ikðtÞ ¼
Z Z

S
�ek31

o2u0
oxot

þ ow0

ox
o2w0

oxot

� �
þ �ek32

o2v0
oy ot

þ ow0

oy
o2w0

oy ot

� �(

þ�ek34
o2v0
oxot

þ o2u0
oy ot

þ o2w0

oxot
ow0

oy
þ ow0

ox
o2w0

oy ot

� �
þ �ek35

o/x

ot
þ o2w0

oxot

� �
þ �ek36

o/y

ot
þ o2w0

oy ot

� �

þ zk þ zk�1

2
�ek31

o
2/x

oxot
þ �ek32

o
2/y

oy ot
þ �ek34

o
2/x

oy ot
þ
o
2/y

oxot

 !" #
� 2ðz2k þ z2k�1Þ

h2
�ek35

o/x

ot
þ o

2w0

oxot

� ��

þ�ek36
o/y

ot
þ o

2w0

oy ot

� ��
� 2ðz3k þ z3k�1Þ

3h2
�ek31

o
2/x

oxot
þ o

3w0

ox2ot

� �
þ �ek32

o2/y

oy ot
þ o

3w0

oy2ot

 !"

þ�ek34
o2/x

oy ot
þ
o2/y

oxot
þ 2

o3w0

oxoy ot

 !#)
dxdy ð29Þ
Up to now, the complete theoretical analysis for piezoelectric/composite anisotropic laminate has been
established. In Part II (Cheng et al., 2005), we will apply the above theoretical analysis model to study some
detailed examples and further carry out the numerical results by a new developed numerical method.
3. Conclusion

Based on Hamilton�s variation principle for electro-elasticity, the generalized governing equations and
relative boundary conditions for the anisotropic piezoelectric/composite laminate plate were carried out
on the assumption of Reddy�s simple high-order theory. Here, the effects of the poling direction of piezo-
electric layers and large amplitude deflection were taken into consideration. Furthermore, considering the
action of piezoelectric layer as a sensor, the sensing equation was also deduced in this paper with the effect
of large-amplitude deflection.
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Appendix A

As shown in Fig. 2(b), the principal axe x3 of a crystal with an eigenfield may be not parallel to the fixed
coordinate system. Then, we introduce a local coordinate system ðxL1 ; xL2 ; xL3Þ to describe the crystal distribu-
tion. If it is assumed that the xL3 lies in (x1, x2) plane, the transformation matrix T from the fixed coordinate
system to the local one has the following form as
T ij ¼
cos a sin a 0

� sin a cos b cos a cos b sin b

sin a sin b � sin b cos a cos b

264
375
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Then the local variables can be presented by the global variables as
elij ¼ T imT jnemn

El
i ¼ T inEn
Further, we can obtain the coordination transfer matrices Tc and Te as follows:
½T c� ¼

n2 m2 0 0 0 2mn
m2p2 n2p2 q2 2npq �2mpq �2nmp2

m2q2 q2n2 p2 �2npq 2mpq �2mnq2

pqm2 �pqn2 qp np2 � nq2 mq2 � mp2 2nmpq
nmq �nmq 0 mp np qm2 � qn2

�nmp nmp 0 mq nq pn2 � pm2

26666664

37777775

and
½T e� ¼
n m 0

�mp np q

mq �nq p

264
375
where n ¼ cos a;m ¼ sin a; p ¼ cos b; q ¼ sin b.
Appendix B

The components of the matrix [Lij] are shown as follows:
L1;1 ¼ A11
o
2

ox2
þ 2A16

o
2

oxoy
þ A66

o
2

oy2

L1;2 ¼ A16

o2

ox2
þ ðA12 þ A66Þ
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� �
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� �
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� �
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� �
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